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Recent discussions within the test community have revealed that there are some 
misunderstandings of what DOT &E advocates regarding the appropriate use of statistical power 
when designing operational tests. I, as well as others in the test community, have observed that 
power calculations based on a single-hypothesis test on the overall mean are being used 
inappropriately by both government and industry in attempt to right-size a test. The purpose of 
this memorandum is to make clear what I view are best practices for the use of power 
calculations, as well as other statistical measures of merit that should be used to determine the 
adequacy of a test design. 

Single-hypothesis test power calculations are generally inappropriate for right-sizing 
operational tests because they are not consistent with the goal of operational testing: to 
characterize a system's performance across the operational envelope. Furthermore, such 
estimates of power are unable to distinguish between both good and flawed test designs because 
they focus solely on the number of test points and ignore the placement of those points in the 
operational envelope. More informative power estimates exist. Power calculations that estimate 
the ability of the test to detect differences in performance amongst the conditions of the test 
(factors) will distinguish between good and flawed designs. 

These "factor-level" power calculations are inherently related to the goal of the test; they 
not only describe the risk in concluding a factor is not important when it really is, but they are 
also directly related to the precision we will have on the quantitative estimates of system 
performance. The latter is key in my determination of test adequacy; without a measure of the 
expected precision we expect to obtain in the analysis of test data, we have no way of 
determining if the test will accurately characterize system performance across the operational 
envelope. A test that has low power to detect factor effects might fail to detect true system 
flaws; if it does, we have failed in our duty as testers. 
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In some cases a single hypothesis test might be warranted: tests where it is impossible to 
vary factors, or in cases where the threshold requirement must be met and we must be confident 
in correctly rejecting the null hypothesis (e.g., if the system's performance is not statistically 
significantly above threshold we must assume it is failing). In those cases, a series of operating 
characteristic curves for various test sizes is warranted to determine test risk. In all other cases, 
an estimate of the precision of the test must be provided for assessing the adequacy of 
characterizing the system's performance across conditions. This will typically be in the form of 
power estimates to detect factor effects; however, other methods might be acceptable provided 
they capture the accuracy of the test's ability to characterize performance. 

As part of the community's discussions about statistical power, some have also noted 
potential difficulties in determining the appropriate effect size for a hypothesis test, since in 
many cases we have limited knowledge of the underlying variance of the system's performance. 
Because of this lack of knowledge, some assert we run the danger of either over or under
estimating the required sample size. However, we are able to estimate standard deviations in the 
data using historical or legacy system performance, modeling and simulation, as well as 
engineering judgment. Furthermore, a program's development typically consists of several 
phases, enabling testers to modify and learn about system performance (including the standard 
deviation) over the continuum of integrated and operational testing. I have also observed that an 
effect size selected for a single hypothesis test is not typically meaningful, and is another reason 
why I do not advocate this method for sizing tests. However, the solution is to ensure that effect 
sizes for observing important factors are properly motivated using all available sources of data 
and based on what is operationally relevant to the warfighter. 1 

Although important, power is not the only measure of the adequacy and merit of a test 
design. Test designs should be constructed based on the goal of the test, which should include 
the ability to discern factor effects (e.g., main effects, interactions, in a statistical model), with 
minimal factor aliasing, and efficiency in covering the design space (that is, the operational 
envelope). Design excellence consists of having enough test points placed in the right locations 
in the operational envelope to answer the questions of interest for the test. When proven 
strategies of point-placement are employed (experimental designs), statistical power is a needed 
and superb tool to "right-size" the number of test points needed. Neither placement nor number 
of points can be neglected. I encourage the use of power to assess test design but also advocate 
other quantitative measures (discussed in the attached document) where appropriate. 

As always, I am open to further discussion and suggestions for improving the rigor and 
adequacy of testing in the Department. To that end, the attached document provides an extended 
discussion on different statistical methods for assessing test adequacy and comparing between 
designs. The type of method that is appropriate depends on the goal of the test and the 
experimental design methodology used. There is no one-size-fits-all solution; rather there is a 
collection of useful tools that apply in various combinations for different test goals and designs. 
I expect my staff, and encourage the test community at large, to use a variety of tools tailored to 

See for example Russ Lenth's "Guidelines for Estimating Sample Size", 2001 for effective strategies to unearth 
reliable estimates of delta and sigma. 
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assess the statistical adequacy of a test design; nevertheless, power/confidence will continue to 
be chief among that toolset. 

J~i?!~~ 
Director 

Attachment: 
As stated 
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Best Practices and Statistical Measures of Merit for Assessing Test Designs 

Test Goal 

A clear test goal is essential in determining which statistical measures of merit are useful 
in assessing the adequacy of the test design. Table 1 summarizes common general classes of test 
goals, the associated test phase when that goal is most likely, and potentially useful experimental 
designs for achieving the specified goal. Table 1 is far from comprehensive or prescriptive; 
rather, it provides a general framework. 

Table 1: General Classes of Test Goals 

Test Objective1 Likely Applicable Test Potentially useful 
Phase Experimental Designs2 

Characterize performance across an 
Response surface designs, operational envelope 
optimal designs, factorial 

Determine whether a system meets Oland OT 
designs, fractional factorial 

requirements across a variety of operational designs 
conditions 

Compare two or more systems across a Factorial or fractional factorial 
Oland OT designs, matched pairs 

variety of conditions 
optimal designs 

Screen for important factors driving 
CTand DT 

Factorial or fractional factorial 
performance designs 

Test for problem cases that degrade 
Primarily DT, Combinatorial designs, 
OT for Business Orthogonal Arrays, Space system performance 
Systems filling designs 

2 

The NIST Engineering Statistics Handbook discusses several goals of tests including prediction, 
characterization, and optimization. http://www.itl.nist.gov/div898/handbook/ 

Douglas Montgomery's text, Design and Analysis of Experiments, describes simple comparative experiments, 
factorial and fractional factorial designs, response surface designs and robust parameter design. 

Myers and Montgomery's text, Response Surface Methodology, provides a description of factorial and 
fractional factorial designs, response surface designs, optimal designs, and robust parameter design. 

Phadke's text, Quality Engineering Using Robust Design, provides an overview of Taguchi designs (Robust 
Parameter Designs) and Orthogonal Arrays. 

Meeker and Escobar's text, Statistical Methods for Reliability Data, provides an overview of accelerated life 
tests. 

Santner's text, The Design and Analysis of Computer Experiments provides an overview of space filling 
designs. 

NIST provides a general overview of combinatorial testing and many useful resources: 
http://csrc.nist.gov/groups/SNS/acts/index.html. 



Optimize system performance with respect 
CT and early DT Response surface designs, 

to a set of conditions optimal designs 

Predict performance, reliability, or material Response Surface Designs, 

properties at use conditions CT and early DT Optimal Designs, Accelerated 
life tests 

Response surface designs, 
Improve system reliability or performance 

CT and early DT Taguchi designs (Robust 
by determining robust system configurations Parameter Designs), 

Orthogonal Arrays 

Notes: DT =Developmental Test; OT =Operational Test; CT =Contractor Test. 

Characterize 

A common goal in testing, and arguably the most important and commonly used goal for 
operational testing, is to characterize performance across a variety of operational conditions. It is 
important to note that if we are able to characterize performance with sufficient precision across 
a variety of conditions, then we are also able to determine whether the system meets a specified 
requirement at a similar level of precision across those same conditions. Multiple classes of test 
designs may be useful when characterization is the primary test goal including factorial and 
fractional-factorial designs, response surface designs, and optimal test designs. The appropriate 
test design will depend on the complexity of the operational envelope and expected performance 
variation across the operational envelope. Some conditions (levels of the factors) might be 
difficult to obtain, making some test designs more suitable (e.g., optimal over factorial). 
However, it should be noted that in most cases Taguchi designs, factor covering arrays, and 
combinatorial test designs are inappropriate for characterization because they provide low power 
for detecting differences in performance across the operational envelope. Power is an extremely 
important measure when the goal of the test is characterization. Other important measures are 
discussed below. 

Compare 

Direct comparison between two or more systems is a common test goal. A variety of test 
designs are useful in comparing among multiple systems. The best comparisons can be made 
using a matched design where the systems (or processes) being comparing are subjected to the 
same tests across all conditions. This approach controls for unwanted variability in the 
comparison; however, other types of test designs for comparisons exist. Power for detecting 
performance differences among systems is an extremely important metric for this test goal. Low 
power tests will mostly likely result in an inability to draw conclusions about differences in 
performance across systems after the testing is completed. 
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Screen 

Screening is an important test goal prior to Initial Operational Test and Evaluation 
(lOT &E). As I highlighted in my initiatives, an important part of integrated testing is to identify 
the key factors early that affect system performance. Identifying these key factors and screening 
out unimportant factors is essential to constructing the initial operational test. Factorial designs 
and fractional factorial designs are extremely useful design tools in screening for the most 
important factors. When the number of factors and levels under consideration is extremely large, 
optimal designs and orthogonal arrays can also be useful. 

Problem Cases 

Testing for problem cases is typically unique to cases where the outcome of the test is 
deterministic - these experimental designs are common for software testing. Here we are 
interested in finding what combinations of factors and conditions result in problems (or failures). 
Combinatorial tests based on orthogonal arrays provide an efficient methodology for covering 
use cases such that faults caused by certain combinations of factors (two-way, three-way, etc.) 
can be quickly detected. Because the system's performance and test outcome is not stochastic in 
nature, statistical power is not a meaningful measure of merit of these test designs. Rather, the 
strength of the design is defined in terms of covering as many of the various combinations of 
input conditions (two-way, three-way, etc.) that cause faults. 

Testing for problems and the corresponding test designs are not necessarily limited to 
determinist outcomes. For example, one may develop a test plan consisting of only the most 
stressing cases to search for problems. This is a risky approach to operational testing. While the 
test may find problems, it will not be able to characterize performance of the system due to 
confounding between the test factors. This confounding will limit our ability to determine the 
causes of problems or draw conclusions about performance in conditions other than those exact 
cases tested. Because of these limitations, I do not recommend these test designs for the 
operational testing of systems we know have stochastic response variables. 

Optimize 

Process optimization is not a common test goal ofiOT &E. However, it is extremely 
useful in system design and manufacturing. Additionally, it can be useful in the development of 
tactics, techniques, and procedures (TTPs). 

Predict 

Interpolation and extrapolation comprise the two general classes of prediction. In OT &E 
we often wish to predict performance in areas within the operational envelope. In these cases an 
experimental design that provides flexibility in defining the statistical model is useful in 
producing predictions with reasonable precision. These designs include response surface designs 
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and optimal designs. The other class of prediction is based on extrapolation. These cases are 
typically riskier, and the validity of the model must be carefully scrutinized since estimates of 
system performance will be made outside the range where data were collected. Predicting 
outside of conditions tested into unproven areas of the operational envelope is an example of this 
type of prediction. Accelerated life tests for predicting reliability at use conditions are another 
type of extrapolation. In general, models used in operational testing must be rigorously validated 

and accredited using live test data collected across the full range of operational conditions; 
Design of Experiments (DOE) does not provide a "magical" means to extrapolate data and 
predict performance in untested regions of the operational envelope. 

Improve 

Improve (unlike optimize) refers to tests that are specifically designed to make processes 
or systems robust to uncontrollable conditions. These types of experiments are used in designing 
systems to ensure robust performance across all operating conditions. Additionally, these 
designs are useful in design for reliability efforts. In these types of experiments the tester 
controls both controllable factors (that is factors that can be controlled in the manufacturing 
process) and uncontrollable factors (often referred to as noise factors, e.g. humidity, operating 
conditions, etc.). The goal ofthe test is to determine the settings ofthe controllable factors that 
result in robust performance across all levels of the noise factors. This test goal is definitely an 
important one, but one that typically arises during the manufacturing process, and not in OT 
where we want to characterize system performance across all conditions. Taguchi designs 
(Robust Parameter Designs) were originally developed to address the "Improve" test objective. 
In the Taguchi thinking, interactions and statistical power are not important because the goal of 
the test is only to find the most robust setting of the controllable factors. However, the research 
community has identified many improvements over traditional Taguchi designs based on 
orthogonal arrays over the years. 3 My office does not currently see the benefit of applying these 
test designs to operational testing; however, test designs constructed using these techniques are 
not necessarily disallowed. My expectation is that if a Taguchi-based orthogonal array design 
(or similar) is used that the statistical measures of merit needed to assess any other test design 
must be provided. 

For more information on the academic debate over Taguchi's robust parameter design see, Taguchi's Parameter 
Desgin: A Panel Discussion, and Pignatiello and Ramberg's article, Top Ten Triumphs and Tragedies of 
Genichi Taguchi. 
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Statistical Measures of Merit 

In 2009, I highlighted in my initiatives the importance of assessing statistical confidence, 
power, and some measure of how well the test spans the operational envelope. Since that time 
there has been a large emphasis on statistical confidence and power, which are essential for 
assessing the statistical adequacy of any test plan. They inform us of the risks of making an 
incorrect decision for a proposed test design. However, it is particularly important to note that 
no single statistical measure of merit, or group of measures, can completely characterize the 
quality of a test design. In my assessment of test designs, I start with careful scrutiny of the 
choice of response variables, factors, levels, and the choice of statistical model which will best 
ensure the testing will result in an adequate characterization of system performance. These 
critical pieces to a test design are inherently difficult to quantify, making engineering and 
operational expertise essential constructing a test. Notwithstanding the recent emphasis on 
statistical power, the above elements remain paramount for assessing test rigor and adequacy. 

Assuming the proper choice of the important factors and responses, statistical measures 
of merit provide a quantitative means to evaluate the quality of an experiment, and/or for 
comparing different experimental designs. They can be used to characterize the quality of the 
prospective test length (sample size) and design choice, by considering the implications on 
knowledge gain (precision), cost, and risk. 

In addition to power and confidence, there are other measures and tools available that 
provide valuable insights when assessing the statistical rigor of a test design. Table 2 provides a 
summary of the most commonly used statistical measures of merit that should be considered 
when planning an experiment. The type of method that is appropriate is dependent on the goal of 
the test and the experimental design methodology used. Again, there is no one size fits all 
solution. 

Statistical 
Measure of Merit 

Statistical Model 
Supported (Model 
Resolution/Strength) 

Confidence 

Power 

Table 2: Statistical Measures of Merit 

Experimental Design Utility 

Describes the flexibility of the empirical 
modeling that is possible with the test 
design 

The true negative rate (versus the 
corresponding risk, which is the false 
positive rate). Quantifies the likelihood in 
concluding a factor has no effect on the 
response variable when it really has no 
affect. 

Usage 

Match to the design goal, 
and expected physical 
response of the system. 
(Second order is normally 
adequate for 
characterization.) 

Maximize 

Maximize The true positive rate (versus the 
corres ondin risk, which is the false 

~~~~--~------------------~ 
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negative rate). Quantifies the likelihood 
in concluding a factor has an effect on 
the response variable when it really 
does. 

Correlation Describes degree of linear relationship Minimize correlation 
Coefficients between individual factors. between factors 

A one number summary describing the 
Variance Inflation degree of collinearity with other factors 1.0 is ideal, aim for less 
Factor in the model {provides less detail then than 5.0 

the individual correlation coefficients). 

Gives the variance {i.e., precision) of the 
Scaled Prediction model prediction at a specified location Balance over regions of 
Variance in the design space {operational interest 

envelope). 

Fraction of Summarizes the scaled prediction 
Keep close to constant 

variance across the entire design space 
{horizontal line) for a large 

Design Space {operational envelope). 
fraction of the design 
space 

Optimality Provides rank ordering of designs based Useful for comparing 
Criteria on individual optimality criteria between optimal designs 

Statistical Model Supportetf 

The statistical model supported by the test design is a primary consideration in 
determining test adequacy that is often overlooked. However, the statistical model is very 
important as it provides a snapshot of the knowledge gained about the behavior of the response 
across the operational envelope. The following types of statistical models are useful in thinking 
about test adequacy: 

• First order models, allow for the estimation of main effects only (shifts in the mean for 
categorical factors or linear relationships for continuous factors). 

• Second order models, allow for the estimation of main effects, two-way interaction 
effects, and quadratic terms for continuous factors. 

• Third order models, allow for the estimate of all second order model terms plus three
way interaction effects, and cubic terms for continuous factors. 

Model complexity can extend to any order. Additionally partial order models are 
possible; one example of a reduced second order model is a model that contains main effects and 
two-way interactions, but not quadratic terms. Larger-order models result in more flexible 
modeling; a flexible model allows for a closer fit to the observed data. However, in operational 
testing, when the goal is to characterize performance, second order models tend to be adequate 
for describing major changes in performance across the operational envelope due to the principle 
of sparsity of effects which notes that most systems are dominated by a few main effects and 
low-order interaction effects. On the other hand, if the test goal is to screen for important factors 

4 Myers and-Montgomery's text, Response Surface Methodology, provides a more detailed discussion of model 
order, the principle of sparsity of effects, and design resolution. 
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a lower-order model may be appropriate. For prediction of a complex response surface, higher 
order models may be necessary. 

For two-level full and fractional factorial experiments, the order of the statistical model is 
often discussed in terms of their design "resolution." A design with greater resolution can 
accommodate higher order model terms than a design with lower resolution. The lower the 
resolution, the more terms in the model are confounded with other terms, making the cause of 
observed performance differences amongst the different test conditions difficult to resolve. 
Resolution III, IV and V designs are particularly important because they address second order 
models, which are commonly used in operational testing. Definitions of these designs are shown 
below: 

1. Resolution III designs. Main effects may be indistinguishable from some two
factor interactions 

2. Resolution IV designs. All main effects can be estimated independently but 
some two-factor interactions may be indistinguishable from other two-factor 
interactions. 

3. Resolution V designs. All main effects and two-factor interactions can be 
estimated independently from each other. 

Confidence and Powe! 

Statistical confidence and power are two extremely important measures that inform us of 
the risks of making an incorrect decision based on test results. Confidence and power are only 
meaningful quantities in the context of specific hypothesis tests. In DOE we are interested in 
multiple hypothesis tests, one for each model term considered. One minus the confidence tells 
us about the level of risk of false positives (that is concluding a factor significantly affects 
performance when it truly does not) that we are willing to accept in both test planning and 
analysis. This risk is often referred to as a Type I error. Power tells us about the probability of 
detecting significant test outcomes. Power is a function of the statistical confidence level, the 
effect size of interest, the variability in the outcomes, and the number of tests. It not only 

describes the risk (1-Power) in concluding a factor does not have an effect on the response 
variable when it really does (Type II error), but also is directly related to the precision we will 
have in reporting results. The latter is key in my determination of test adequacy; without a 
measure of the expected precision we expect to obtain in the analysis oftest data, we have no 
way of determining if the test will accurately characterize system performance across the 
operational envelope. A test that has low power might fail to detect true system flaws; if it does, 
we have failed in our duty as testers. Estimating statistical power is not the uncertain and 
unreliable task suggested by some; instead it is a mature and proven discipline backed by more 

References on statistical confidence and power are numerous; see for example Vining and Kowalski, Statistical 
Methods for Engineers, for a practical explanation of statistical confidence and power. 
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than 50 years of practice in all fields of science, medicine, engineering, and the social sciences. 
Additionally, in a limited resource test environment, power analyses allow decision makers to 
see the tradeoff between risk and test resources. 

While avoiding both types of errors is ideal, striking the proper balance between the two 
risks can be crucial. Adjusting the confidence levels in a test changes the distribution of risk 
between Type I and Type II errors; increasing the confidence level will decrease the false 
positive rate (Type I error), but also increase the false negative rate (Type II error). 

Co/linearity 

When designing an experiment, collinearity describes the degree of linear relationship 
between two or more factors. A well designed experiment minimizes the amount of collinearity 
between factors. Two or more factors are consider collinear if they move together linearly (as 
one increases, so does the other). For example, if a test plan only looks at large targets at long 
ranges and small targets at short ranges, then the target size and the range are perfectly collinear; 
this effect is often also referred to as complete confounding. 

Analysis of data containing highly collinear factors can be misleading, confusing, and 
imprecise. Variances of coefficient estimates become greatly inflated (making the precision of 
the test worse) when factors are highly collinear, which leads to model terms (effect of a factor 
on performance) being deemed non-significant when in fact they were significant (Type II 
errors). Additionally, using a model containing highly collinear factors to extrapolate or 
interpolate between design points can yield estimates with large uncertainty. 

Two common statistical measures of merit that can be used to help detect collinearity in a 
test design are correlation coefficients and variance inflation factors (VIFs). 6 Both of these 
measures are used for planning a DOE and are calculated and monitored prior to executing an 
experiment. They are functions of the number of runs, the factors and levels in an experiment, 
and how those factors vary from run to run. They are not a function of the data collected from 
the test. 

Pearson's correlation coefficient is the most commonly used correlation coefficient 
between two variables and is defined as the covariance of the two variables divided by the 
product of their standard deviations. 7 Magnitudes near one indicate a strong linear association 
between the two variables while values near zero indicate little or no linear association. Since 
most operational tests have more than two factors, it is useful to construct a matrix of correlation 

6 

7 

Myers and Montgomery's text, Response Surface Methodology, provides a more detailed discussion of variance 
inflation factors. Additionally, the Wikipedia page on variance inflation factors is well written: 
http:/ /en. wikipedia.org/wikiN ariance inflation factor. 

Pearson's correlation coefficient is widely discussed in a variety of statistical references. The Wikipedia 
description is extensive: https://en.wikipedia.org/wiki/Pearson product-moment correlation coefficient. 
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coefficients to assess the correlation between factor pairs. Statistical software packages make 
these calculations accessible to all practitioners. 

VIFs provide a one-number summary description of collinearity for each model term. 
Given an experiment with multiple factors, the variance inflation factor associated with the ith 
factor reflects the increase in the variance of the estimated coefficient for that factor over the 

variance that would have been obtained if the factors were orthogonal. V/Fi can range from one 
to infinity. Values equal to one imply orthogonality, while values greater than one indicate a 
degree of collinearity between the ith factor and one or more factors. The square root of the 

variance inflation factor indicates how much larger the standard error is (and therefore, how 
much larger the confidence intervals will be), compared to a factor that is uncorrelated with the 
other factors. As a rule of thumb, values greater than 5 suggest that collinearity may be unduly 
influencing coefficient estimates. 

Scaled Prediction Variance (SPV) 

One reason we conduct tests is to predict future performance of a system within the 
operational envelope. Prediction variance describes the precision involved with making a 
prediction using an empirical model. 8 Prediction variance is a function of the sample size and 
correlation in the experimental design, the location in the design space where the prediction is 
made, and the overall variance in the response. Since the overall variance of the response 
variable is often not well-known prior to collecting the data, SPV can be used to evaluate test 
designs; SPV is a measure of the relative prediction variance to a nominal overall variance. 

The benefit of SPV is that it can be used to evaluate a designed experiment prior to 
running the test and collecting data. Multiple designed experiments can be postulated for a 
single test event and compared using SPV and the best design can be selected. When assessing a 
design in this way, it is important to consider the full range of values each factor can take. For 
categorical factors, this is just a matter of considering prediction at each level of the relevant 
factors. For continuous variables, graphical methods such as contour plots are available. 

SPV is relatively straightforward to use in two dimensions (two continuous factors) and 
for categorical factors. ·However, in more complex cases simple plots called fraction of design 

space (FDS) plots are useful for investigating prediction variance.9 The FDS plots the 
cumulative distribution of the SPV for a given design space. An FDS plot shows the proportion 
of the design space with SPV less than or equal to a given value. Figure 1 shows the FDS 
comparing two designs. This chart shows that nearly 80 percent of the Design A space has an 
SPV below 4.0, while roughly 55 percent of the Design B region has an SPV below 4.0. From 

9 

Myers and Montgomery's text, Response Surface Methodology, provides a more detailed discussion of scaled 
prediction variance. 

Both Design Expert and JMP provide detailed descriptions of the FDS Plot: 
http:/ /www.statease.com/news/news0809 .pdf and http://www .jmp.cornlsoftware/pdf/1 03044 doe.pdf 
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this chart it is clear that Design A is a better design for prediction across the operational 
envelope . 
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Figure 1: FDS Graph for Candidate Experimental Designs 

Optimal Design Criteria 

10 

Optimal designs are constructed based on specific mathematical criteria, picking a 

collection of test points in the operational envelope based on a calculated "score" called an 
optimality criterion. Therefore, multiple test designs can be compared using their optimality 
criteria.10 Several methods exist for optimizing the test point coverage in optimal designs; these 
include, but are not limited to, D-, I-, and G-optimal criteria. Each method spreads the test points 
throughout the design space depending on a mathematical formula, and each has different 
benefits that are tied to the test goal. For example, D-optimal designs spread the points out in 
such a way as to minimize the overall variance of the parameter estimates while also not letting 
the covariance between the parameter estimates get too large. I -optimal designs are more 
focused on prediction, and achieve this by "spreading out" the test point within the design space 
evenly. !-optimality is directly related to SPV, as it is proportional to the integral of the SPV 
curve shown in Figure 1. G-optimal designs minimize the maximum prediction error over the 
design space rather than the average prediction error. While many other design criteria have 
been proposed in the literature, D- and !-optimal designs are perhaps the most popular. This is 

due in part to their ubiquity in statistical software. While any of these optimality criteria are 
useful for comparing designs, they should always be used in combination with statistical power, 
and an assessment of the factor correlation to provide a robust assessment of the test designs 
adequacy. 

10 Myers and Montgomery's text, Response Surface Methodology, provides a detailed discussion optimal designs 
and optimality criteria. 
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Summary 

In addition to confidence and power there are a variety of tools that are available for 
assessing the statistical adequacy of a test design. The list provided here is far from 
comprehensive; however, it does capture the most commonly available tools in statistical design 
software. The type of tool that is appropriate is dependent on the goal of the test and the 
experimental design methodology used. There is no one size fits all solution, but rather a 
collection of useful tools that apply in various combinations to different test goals and designs. 
In cases where statistical confidence and power do not provide the full picture of the adequacy of 
the test design these measures and metrics provide amplifying information in assessing test 
adequacy. Notwithstanding these measures of merit, the choice of response variables, factors, 
levels, and the choice of statistical model which will best ensure the testing will result in an 
adequate characterization of system performance, remain paramount. 
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